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Dynamic reconfiguration imposes significant penalties in terms of performance and energy.
Scheduling the execution of tasks on a dynamically reconfigurable device is therefore of critical
importance. Likewise, other application domains have cost models that are effectively the same
as dynamic reconfiguration; examples include: data transmission across multiprocessor systems;
dynamic code updating and reprogramming of motes in sensor networks; and module allocation,
wherein the sharing of resources effectively eliminates inherent reconfiguration costs. This article
contributes a fully polynomial time approximation algorithm for the problem of scheduling inde-
pendent tasks onto a fixed number of heterogeneous reconfigurable resources, where each task has
a different hardware and software latency on each device; the reconfiguration latencies can also
vary between resources. A general-purpose processor and a field programmable gate array were
used to experimentally validate the proposed technique using a pair of encryption algorithms. The
latencies of the schedules obtained by the approximation scheme were at most 1.1× longer than the
optimal solution, which was found using integer linear programming; this result is better than the
theoretical worst-case guarantee of the approximation algorithm, which was 1.999×. The length
of the schedules obtained using list scheduling, a well-known polynomial time heuristic, were at
most 2.6× longer than optimal.
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1. INTRODUCTION

Reconfigurable computing has the potential to dynamically adapt a hardware
platform to meet the requirements of an application; however, the overhead
associated with dynamic reconfiguration has inhibited the widespread use of
this promising technology over the past 2 decades. In many cases, the delay
of dynamic reconfiguration is comparable to the runtime of the application;
even when dynamic reconfiguration is used, its latency—rather than the la-
tency of the application—will dominate the overall runtime. Consequently,
effective scheduling algorithms that can map tasks onto a set of reconfig-
urable resources—including the scheduling of reconfiguration operations—are
required in order to make reconfigurable computing a reality.

Virtually all modern parallel systems employed today are composed of het-
erogeneous components, each of which has an associated reconfiguration cost.
The most obvious component would be a dynamically programmable field pro-
grammable gate array (FPGA), or some other type of coarse-grained reconfig-
urable device. In a more general sense, the time and energy consumed through
the transmission of code and/or data to remote processors across a network can
also be modeled as a form of reconfiguration [Kogekar et al. 2004, 2005], even
though the underlying hardware platform does not change. One particularly
poignant example of this type of reconfiguration is dynamic module uploading
in sensor networks.

Another application is the allocation of various library modules to available
resources given a fixed area constraint. Resource sharing among IP cores can
reduce the area, as well as other costs and can, therefore, maximize the number
of library modules implemented in hardware. [Moreano et al. 2005] Resource
sharing, in this context, can be modeled as the absence of a reconfiguration cost.
Sharing resources can reduce the amount of time spent reconfiguring a device
at runtime and can, therefore, reduce the overall application latency.

All of these problems can be reduced to a straightforward scheduling prob-
lem on a set of heterogeneous resources with heterogeneous reconfiguration
costs.

1.1 Contribution

This article presents a full polynomial time ε-approximation algorithm that
solves this scheduling problem. An approximation algorithm is a heuristic
whose solution quality is guaranteed to be at most a constant factor away from
the optimal solution. A fully polynomial-time approximation algorithm is one
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whose solution quality and runtime can be varied according to a term denoted
ε [Cormen et al 2001; Hochbaum 1997].

The ε-approximation algorithm presented in this article is based on an op-
timal scheduling algorithm that considers all possible assignments of tasks to
resources. A subset of the possible assignments is considered; the specific choice
of which assignments to consider yields the ε-approximation.

Two sets of experiments confirm the efficacy of the ε-approximation approx-
imation algorithm. The first set of experiments, on a randomly generated set of
input data, compares the ε-approximation algorithm to list scheduling, a well-
known and well-understood heuristic that has been used in the past for a wide
variety of scheduling problems, and to an optimal integer linear programming
(ILP) formulation of the problem. The ε-approximation algorithm found the op-
timal solution in the vast majority of cases, while list scheduling found optimal
solutions rarely.

The second set of experiments focuses on parallel encryption using the ad-
vanced encryption standard (AES, a.k.a. Rijndael) algorithm: Blocks of data
to be encrypted are scheduled on a system containing a general-purpose pro-
cessor and an FPGA. Once again, the ε-approximation algorithm found opti-
mal and near-optimal solutions in all cases, while list scheduling performed
considerably worse. Altogether, these experiments validate the efficacy of the
ε-approximation algorithm while confirming that the solutions fall within the
theoretically established bounds.

Finally, we briefly sketch a set of extensions to the ε-approximation algorithm
that allow it to be used in the context of task graph scheduling, where tasks
may be dependent on one another and where there is a communication costs
between dependent tasks that are scheduled on distinct resources.

1.2 Article Organization

This article is organized as follows. Section 2 begins with a motivating exam-
ple. Section 3 formalizes the problem statement. Section 4 presents two optimal
solutions to the problem: an ILP formulation, which we implemented, and a dy-
namic programming algorithm, from which the ε-approximation algorithm is
derived in Section 5. Section 6 presents the experimental evaluation of the
ε-approximation algorithm and compares it to list scheduling and the ILP for-
mulation. Section 7 describes a set of extensions that adapt the ε-approximation
algorithm to task graph scheduling. Section 8 proceeds to summarize related
work, and finally, Section 9 concludes the article.

2. MOTIVATING EXAMPLE

This section presents a motivating example for the scheduling problem that
illustrates the key point of the ε-approximation algorithm, which is the pri-
mary contribution of this paper. We are given two resources: a processor and an
FPGA with respective reconfiguration costs of 0 and 5. Table 1 lists two tasks
to be scheduled, including their respective runtimes on the processor an FPGA.
The tasks have distinct types, meaning that the FPGA must be reconfigured
between the execution of one task and another.
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Table I. Tasks to Schedule

Task Task Type Execution Time on Processor Execution Time on FPGA
1 1 5 2
2 2 4 3

Fig. 1. (a) assignment of Task 1; (b) assignment of Task 2.

Scheduling is performed in a two-dimensional space, where the x-axis rep-
resents the runtime of tasks on the processor and the y-axis represents the
FPGA. Figure 1(a) considers the potential assignment of the first task to both
of the resources. The points (0 + 5, 0) and (0, 5 + 2) represent the time taken to
schedule the task on the processor and the FPGA, inclusive of reconfiguration
costs. Figure 1(b) proceeds to schedule the second task following the first. This
yields four data points: (0, 15), (4, 7), (5, 8), and (9, 0).

The runtime of each data point (x, y) is max{x, y}. For example, point
(4, 7) represents the parallel execution of Task 1 on the FPGA and Task 2
on the processor, requiring a total time of 7; point (5, 8) represents the parallel
execution of Task 1 on the processor and Task 2 on the FPGA, requiring a total
time of 8. Point (0, 15), in contrast, represents the serial execution of both tasks
on the FPGA, and point (9, 0) represents the serial execution of both tasks on
the processor; the total times are 15 and 9, respectively.

The optimal solution for these two tasks is point (4, 7); however, this example
also illustrates something further. Suppose that there were several additional
tasks to be scheduled. In this case, the four points in Figure 1(b) are partial
solutions (it should be noted that none of these partial solutions is guaranteed
to be part of the optimal solution). Within these partial solutions, however, it
is quite clear that point (4, 7) is superior to point (5, 8). If there were more
tasks to schedule, then (5, 8) could not possibly be part of an optimal schedule,
as such a schedule could be improved via substitution of point (4, 7) instead.
Hence, the point (4,7) dominates (5,8), and this point can be eliminated without
comprising the optimality of the algorithm. The ability to remove points from
consideration is a key feature of the ε-approximation algorithm described in
Section 5.
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3. PROBLEM STATEMENT

The problem addressed in this article is to schedule N independent tasks onto
a fixed set of M heterogeneous resources with heterogeneous reconfiguration
costs; we assume that the scheduling is nonpreemptive, meaning that the ex-
ecution of a task is not interrupted once it has been scheduled. The goal is to
minimize the makespan, that is, the completion time of the final task.

Independent tasks means that there is no precedence relation among tasks,
that is, given a sufficient number of resources, all of the tasks can be executed
in parallel; the problem, therefore, only becomes challenging when M < N .
This is a special case of general task graph scheduling where the task graph
contains no edges.

Each of the tasks can have different and unrelated execution times on each
resource; each resource has an associated reconfiguration cost. We make two
simplifying assumptions regarding reconfiguration costs: (i) reconfiguration is
preemptive (i.e., no task may execute on a resource during reconfiguration),
and (ii) the reconfiguration cost is known a priori.

By extending the notion of a resource to also be a portion of an FPGA that
can be partially reconfigured, partial reconfiguration can also be addressed. The
approach presented in this article is robust enough to handle partial reconfig-
urations for cases where the portions of the FPGA to be partially reconfigured
are known.

Clearly, this model abstracts away many low-level details. For example, con-
sider a program executing on a processor. Here, we assume that the execution
time is constant. In reality, there may be many different execution times, de-
pending, for example, on which optimizations were enabled during compilation.
The same is true for execution on an FPGA, as variations in high-level optimiza-
tions, technology mapping, floorplanning, placement, and routing can all affect
the latency of the task.

Each task has an associated type, whose implication is as follows. Suppose
that tasks t1 and t2 are scheduled to execute consecutively on resource r. If their
types are different, then r must be reconfigured following the execution of t1

in order to execute t2; if their types are the same, then the reconfiguration is
unnecessary. Exploiting task types to eliminate unnecessary reconfigurations
is key to achieving low-latency schedules under this model.

An alternative model allows the reconfiguration costs to be associated with
each task type rather than the resources. This, for example, can model partial
reconfiguration for FPGAs. The advantage is that smaller tasks do not need to
spend the time to reconfigure the whole device; however, there are still some
restrictive assumptions: (i) This approach models reconfiguration time, but not
area (i.e., two small tasks with short reconfiguration times cannot execute si-
multaneously on the same resource); (ii) in practice, the reconfiguration time
depends on both the task and the resource, for example, the reconfiguration
time of task t on an Altera Stratix-series FPGA is different from that of an
Altera Cylone-series FPGA, and a Xilinx Virtex-series FPGA, and the like.
These details are abstracted away in our model.
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3.1 Problem Details and Decomposition

The scheduling problem can be decomposed into two interacting subproblems:
(1) the binding of tasks to resources; and (2) computing a schedule for each task
on each resource. Due to the independence of tasks, the optimal solution to Step
(2) is to schedule all tasks of the same type that are bound to the same resource
consecutively, as this minimizes the aggregate reconfiguration delay. This is
implicit in scheduling heuristics presented in Nahapetian et al. [2007]; Resano
et al. [2004], and Ghiasi et al. [2004], and we formally prove its optimality in
Theorem 1.

THEOREM 1. Assume that each task is bound to exactly one resource, then
the optimal schedule executes all tasks of the same type consecutively on each
resource.

PROOF. Let S = (t1, t2, . . . , tn) be an ordering of tasks that are bound to a
resource, R. Now, let us decompose S into five suborderings, S = S1S2S3S4S5,
such that S1 = (t1, t2, . . . ta), S2 = (ta+1, ta+2, . . . , tb), S3 = (tb+1, tb+2, . . . , tc), S4

= (tc+1, tc+2, . . . , td ), S5 = (td+1, td+2, . . . , tn), S2 and S4 are nonempty and only
contain tasks of type i, S3 is nonempty, and ta, tb+1, tc, and td+1 all have types
other than i. We prove by contradiction that S is suboptimal.

Assume to the contrary that S is an optimal ordering, that is, that L(S), the
latency of executing the tasks in order S, including reconfiguration latencies, is
minimal among all orderings.

Let �k be the latency of executing all tasks in Sk, including reconfiguration
latencies.

For S2 and S4, all tasks have type i. Let ρi be the latency of reconfiguring R to
support tasks of type i, and let L2 and L4 be the respective latencies executing
the tasks in S2 and S4, without the reconfiguration latencies. Therefore, �2 =
ρi + L2 and �4 = ρi + L4.

Then:

L(S) = �1 + �2 + �3 + �4 + �5

= �1 + ρi + L2 + �3 + ρi + L4 + �5

= 2ρi + �1 + L2 + �3 + L4 + �5

= 2ρi + X, whereX = �1 + L2 + �3 + L4 + �5

Now, consider a different task ordering S’ = S1S3S2S4S5. Since all tasks in
S2 and S4 have type i, there is no need to reconfigure the device between S2

and S4. Therefore, the latency of executing the tasks in S2S4 is ρi + L2 + L4.
Therefore, the total latency of S’, denoted L(S’) is:

L(S′) = �1 + �3 + ρi + L2 + L4 + �5

= ρi + X ≤ 2ρi + X = L(S)

If ρi > 0, then L(S’) < L(S), contradicting the assumption that S is optimal. It
follows that all tasks of the same type must occur consecutively in an optimal
ordering.
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In conclusion, Theorem 1 proves that obtaining an optimal schedule is triv-
ial once tasks have been bound to resources; therefore, the most important
problem is to determine precisely the binding of tasks to resources. This task,
nonetheless, is NP-complete.

4. OPTIMAL ALGORITHMS

This section presents two optimal algorithms that solve the scheduling prob-
lem that was characterized in the preceding section. Section 4.1 presents an
ILP formulation, which is used for comparison against the ε-approximation al-
gorithm in Section 6. Section 4.2 presents an optimal dynamic programming
algorithm from which the ε-approximation algorithm is derived.

4.1 Integer Linear Program (ILP)

Figure 2 shows the ILP formulation of the scheduling problem outlined in
Section 3. The objective function is to minimize the makespan. Since the goal is
to minimize the makespan, it follows that the makespan is equal to the maxi-
mum finishing time among all resources. Constraint (1) ensures that each task
is bound to exactly one resource. Constraint (2) ensures that the reconfiguration
cost is calculated once for each task type that is bound to each resource, in ac-
cordance with Theorem 1. Constraint (3) ensures that the maximum finishing
time of all of the tasks bound to each resource does not exceed the makespan.

4.2 Dynamic Programming Algorithm

The optimal algorithm is formulated as a dynamic programming problem. An
M -dimensional space is created where M is the number of resources (e.g., M =
2 in Figure 1). Points are plotted onto the graph, according to their execution
times, or costs. For example, the point (3, 4, 0) represents 3 units of time on the
first resource, 4 units of time on the second resource, and 0 units of time on the
third.

Pseudocode for the optimal algorithm is shown in Figure 3.
The algorithm proceeds as follows. First, the tasks are sorted according to

their type, to allow for concise record keeping of reconfigurations. Next, the
first M points are placed in the space. The reconfiguration cost, if applicable,
is summed with the execution time to plot the points.

Each remaining task creates M new points for each existing point in the
graph. The cost of each new point is the sum of the cost of the old point and
the cost of the current task on the current resource. The reconfiguration cost is
added, only if it has not yet been incurred for the current task type.

In the pseudocode, the position of the point in the space is represented by
the array named Cost, which stores the cost incurred on each resource.

During each iteration after the new points are added, the old points are
discarded. After all the tasks have been graphed, the optimal solution is the
one with the smallest makespan. The makespan of all the points on the graph
is calculated as the maximum of the finish times on each of the resources.

While plotting points, certain cases arise where a point will obviously not lead
to an optimal solution, thus these points can be eliminated from consideration.
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Fig. 2. Integer linear program formulation of the reconfigurable scheduling problem for indepen-
dent tasks with heterogeneous resources.

This occurred, for example, with point (5, 8) in the example shown in Figure 1.
Figure 4 shows pseudocode for the elimination procedure.

Now, consider the case where all points of one type are plotted, but before
any points of the next type have been plotted. The points that are larger in all
dimensions can be eliminated. These points will not be a part of the optimal so-
lution because a better solution exists up to that point. Eliminating these points
will not diminish the quality of the solution due to the optimal substructure of
the problem.

A larger cost between points of the same type is not enough to eliminate a
point. Points with a larger cost are still potentially optimal because they have
already incurred the reconfiguration cost. If a point is larger than another point
that has not incurred the reconfiguration cost, it is too early to say if the point
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Fig. 3. Optimal dynamic programming algorithm for the reconfigurable scheduling problem for
independent tasks with heterogeneous resources.

Fig. 4. Pseudocode to remove provably suboptimal points from consideration during scheduling.

will be larger than the other point after all the tasks of the same resource have
been plotted.

Points, however, can be eliminated if they have equal or worse reconfiguration
histories. The reconfiguration history of each point is maintained by the array
reconfiged, which stores whether the point’s assignment, so far, has involved a
reconfiguration of the resource, r, on the current task type.

Until now, we have only considered the case where the reconfiguration
cost is associated with the resource. The reconfiguration, in actuality, may be
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associated with the task; for example, to transmit data to a remote processor in
a multiprocessor system, the reconfiguration cost is proportional to the size of
the data. The only modification to the algorithm is to store the reconfiguration
cost for each task type rather than each resource.

THEOREM 2. Assume we are given two points, p and q, representing the in-
termediate solutions of the dynamic programming algorithm. If p has a greater
cost on all resources and has completed the same or less reconfigurations, then
point p is dominated by the point q and hence will never be a part of the optimal
solution.

PROOF. Assume the contrary, that there is a problem instance where point
p is part of the optimal solution. As point p and point q represent the same set
of scheduled tasks, if point p was replaced with point q, the completion time
on all the resources would decrease, and hence the makespan would decrease.
Thus, the optimal solution could be improved, which is a contradiction. Hence,
point p will never be a part of the optimal solution.

THEOREM 3. The dynamic programming algorithm in Figures 3 and 4 min-
imize the makespan.

PROOF. The algorithm carries out an exhaustive search of all possible task
assignments. It only eliminates points from its consideration, when, provably,
they will not lead to the optimal solution.

The dynamic programming algorithm has an exponential worst-case time
and space complexity of O(MN), where M is the number of resources and N
is the number of tasks. Though the algorithm’s space and time complexity
make is prohibitory, it provides a solid foundation for the polynomial time ε-
approximation algorithm introduced in the next section.

5. APPROXIMATION ALGORITHMS

The scheduling problem, as formulated in Section 2, is NP-complete, proven by
a reduction from the well-known set-sub problem; unless it is somehow proven
that P = NP, an optimal polynomial time algorithm for this scheduling problem
does not exist [Follcarelli et al. 2006].

The optimal dynamic programming algorithm described in the preceding
section has an exponential worst-case time complexity. Using a trimming pro-
cedure, however, this algorithm can be converted into a fully polynomial time
ε-approximation algorithm. The approximation algorithm can find solutions
that are a factor of at most 1 + ε away from the optimal solution.

The underlying idea is that if two points in the M-dimensional space are
sufficiently close, then it suffices to examine just one of them. Although this
sacrifices optimality, the trade-off between runtime and solution quality can be
tuned by the user’s choice of ε.

A point, o, in the original space is not transferred to a new space if:

makespana

(δ + 1)
≤ makespano ≤ makespana, (4)
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Fig. 5. Pseudocode for the approximation algorithm.

where a is the point in the new space and δ the factor by which points are
trimmed. It should be noted that δ is not the same as ε; δ and ε will be related
to one another after some further discussion.

Three considerations are necessary when approximating points. First, when
approximating between the assignment of tasks of the same type, the point in
the new space must have a larger or equal approximation history; this is based
on the same reasoning applied to the elimination of points (e.g., Figure 1). Sec-
ond, the makespan of the point that is eliminated must be approximately equal
to the point that replaces it. Third, the cost along all axes must be approximately
the same or greater for the point to be approximated.

The psuedocode for the approximation algorithm is the same as for the opti-
mal algorithm, but with one additional modification. After removing all points
that can be eliminated, the remaining points are approximated, using the pro-
cedure in Figure 5. A call to this approximation procedure is placed between
lines 30 and 31 in Figure 3.

The approximation algorithm starts off by adding the first point in New-
PointsList to the newly formed list, named ApproxPointList. The remaining
points are added to ApproxPointList, if a point does not already exist in
ApproxPointList that approximates it.

The input to the scheduling algorithm is a collection of N tasks, M resources,
and an approximation parameter ε, where 0 < ε < 1. The algorithm returns a
schedule whose makespan is worst than optimal by a factor of at most 1+ ε.

We set ε to be related δ by the following equation: δ = ε/2N so that the
following proof will hold.

THEOREM 4. The approximation procedure presented in Section 5.1 returns
a schedule for the input tasks on the given resources, where the makespan of the
schedule is 1 +ε factor of the makespan of the optimal schedule.

PROOF. The approximation algorithm introduces no error except in the trim-
ming of points from the space. Thus, we consider only that part of the algorithm.

Let makespano be an optimal solution and makespana be an approximate
solution. We use an asterisk to denote the solution after the final iteration, for
example, makespan0∗.
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To prove the approximation bound, we must formally porve that
makespana∗< (1 + ε)makespan0∗. Our approach uses inductions on the number
of iterations. Specifically, we prove that for every point o in the original space
at iteration i, there is a point a in the new space such that:

makespana(
ε

2N + 1
)i ≤ makespano ≤ makespana. (5)

This equality must hold for the final iteration as well, that is:

makespana∗(
ε

2N + 1
)N ≤ makespano∗ ≤ makespana ∗ . (6)

It follows that:
makespana∗
makespano∗ ≤

( ε

2N
+ 1

)N
. (7)

Now, observe that:

lim
N→∞

( ε

2N
+ 1

)N
= eε/2 ≤ 1 + ε

2
+

( ε

2

)2
, (8)

Since 0 < ε < 1, it follows that:

1 + ε

2
+

( ε

2

)2
≤ 1 + ε (9)

From which we can conclude:
makespana∗
makespano∗ ≤ 1 + ε (10)

This proves that the algorithm is an ε-approximation.

Next, we prove that the algorithm runs in polynomial time.

THEOREM 5. The approximation algorithm runs in polynomial worst-case
time.

PROOF. First, we need to bound the number of points in the space; this is ac-
complished by using a maximum value for the makespan, denoted by T (similar
to Figure 2). T , for example, could be the makespan of all of the tasks scheduled
onto one single resource; or, alternatively, it could be the makespan computed
by an efficient heuristic, such as list scheduling, that makes no guarantees of
solution quality; the optimal makespan cannot exceed T .

Based on the approximation scheme, each point in the space must differ from
the other points by at least 1 + ε/2N along all M axes in the space. Thus, the
maximum number of points in the space, P , is given by:

P = (�log1+ε/2N T	 + 1)M × M ! (11)

=
(

lnT
ln(1 + ε/2N )

+ 1
)M

× M ! (12)
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Since x/(1+x) ≤ ln(1+x), it follows that:

≤
(

2N (1 + ε/2N )lnT
ε

+ 1
)M

× M ! (13)

≤
(

4NlnT
ε

+ 1
)M

× M ! (14)

Here, we assume that M , the number of resources, is a constant value. There-
fore, M ! is also constant, and the number of points in the space is proportional
to 1/ε raised to a constant power. Since the complexity of the algorithm is poly-
nomial in terms of the number of points in the space, and ε, the ε-approximation
is fully polynomial time.

It is important to note that the runtime on the algorithm is heavily depen-
dent on the number of resources, M , which is assumed to be a constant. If
the approximation algorithm trimmed points according to their distance from
the origin instead of makespan results in an ε − √

2 approximation, but whose
running time is less dependent on M .

6. EXPERIMENTAL RESULTS

This section evaluates the quality of the ε-approximation algorithm presented
in this article; it is compared against the optimal ILP formulation, as well as
list scheduling, a well-understood greedy heuristic. The list scheduling heuris-
tic processes tasks in the sorted order, and schedules the current task on the
resource with the earliest finish time.

Section 6.1 applies the algorithm to scheduling parallel encryption tasks.
Section 6.2 summarizes a theoretical study on a set of randomly generated
data.

6.1 Application to Encryption

The first set of experiments schedules a parallelized encryption algorithm on
a system with heterogeneous resources. The encryption algorithm used is the
advanced encryption standard (AES, a.k.a. Rijndael), which is a block cipher.
The target system contains an Intel Pentium III general-purpose processor and
a Virtex-E 1000e FPGA.

The system initially splits the data inputs, which are to be scheduled, into
heterogeneous blocks with different encryption levels, that is, three different
key sizes: 128, 196, and 256 bits. The input data is also split into blocks of 128,
196, and 256 bits for encryption.

This yields nine distinct task types. The reconfiguration time of the FPGA
for each task type was determined a priori by implementing different versions
of the AES and synthesizing it on the FPGA. The runtime on both the Pentium
III and FPGA was determined by encrypting randomly-generated input data
on each system.

We generated a suite of 1,000 test cases with randomly generated input
bitstreams to encrypt. We then scheduled each test case three times: using the
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Fig. 6. AES scheduling error distribution: (a) ε-approximation vs. ILP; (b) list scheduling heuristic
vs. ILP.

optimal ILP formulation, using the approximation algorithm, and using list
scheduling. For the approximation algorithm, we set the value of ε to 0.999,
which means that the makespan of the approximate solution should be 1.999×
greater than the makespan of the optimal solution in the worst case.

Figures 6(a) and 6(b) show the results of these experiments. Figure 6(a)
compares the approximation algorithm to the ILP, while Figure 6(b) compares
the list scheduling heuristic to the ILP. In both figures, the y-axis shows the
number of experiments out of 1,000, and the x-axis represents the maximum
factor by which the makespan is different from the optimal value.

Figure 6(a) shows that out of the 1,000 test cases, the approximation algo-
rithm found the optimal solution in the vast majority of cases; in the few cases
where it could not find an optimal solution, the makespan of the approximate
solution was 1.1× worse than the optimal makespan. These results are far
closer to the optimal solution than to the theoretical worst case.

Figure 6(b) shows that list scheduling performs much worse; in no case did
list scheduling find an optimal solution. The makespans obtained from list
scheduling range from 1.6× to 2.6× worse than optimal.

6.2 Random Input Data

This Section presents an experimental study in which we vary the number of
tasks and task types; unlike the preceding subsection, the set of tasks to be
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Fig. 7. Varying the number of tasks to be scheduled.

scheduled are generated randomly. First, we randomly generate a number of
task types, and the number of tasks per type (which is assumed to be the same
for all types); from this, we can derive the total number of tasks to be scheduled.
In each case, we randomly generate 1,000 instances of the problem to solve.

Figure 7 compares the ILP, ε-approximation algorithm, and list scheduling
heuristic on these benchmarks with ε set to 0.999. Since ε must be between the
values 0 and 1, a very large value for ε was chosen to give the list scheduling
heuristic the best chance to be competitive.

Figure 7 shows that in the vast majority of cases, the ε-approximation al-
gorithm found optimal solutions, while the list scheduling heuristic did not.
Furthermore, in a fair number of cases, the list scheduling heuristic found
solutions that were worse than the theoretical guarantee of 1.999× of the
ε-approximation algorithm. List scheduling faired best when there was only one
type of task: In this case, reconfiguration occurs at most once per resource—an
overly simplistic instance of the problem.

In Figure 8, the value of ε is varied, and there are three task types with three
tasks per type. For each choice of epsilon, the results are compared to the ILP.
Also, we verify than no experiment results in a makespan (1+ε)× longer than
optimal. The list scheduling heuristic, once again, produces many solutions
whose makespan are more than (1+ε)× longer than the optimal solution.

In Figure 9, we examine the effect of varying the number of resources. This
article assumes a finite and limited number of resources, as the algorithm’s
complexity increases exponentially with respect to the number of resources.
Figure 9 experimentally demonstrates an increase in the number of resources
improves the quality of the resulting schedules both for our algorithm as for
the list scheduling heuristic, as would be expected by spreading out the tasks
across resources. However, even with 100 resources, the list scheduling algo-
rithm averages over 18% of the makespans as more the worst-case theoretical
bound imposed on the approximation algorithm.
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Fig. 8. Varying the value of ε.

Fig. 9. Varying the number of resources to be scheduled.

7. EXTENSION TO TASK GRAPH SCHEDULING WITH COMMUNICATION

Until now, we have considered independent tasks. Our work, however, can be
extended to handle the case where there are dependencies between tasks. This
is in the case where we are given as input a data flow graph, where each node
is a task and each edge represents a data dependency between the parent node
and the child node. The graph, of course, is a precedence directed acyclic graph
(DAG).

To extend our work, the basic idea is to levelize the graph and then run our
algorithm on each level of the graph. There are a few additional issues that
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need to be considered. First, to handle the case when certain resources take
longer to execute than others at a certain level, the execution time of the re-
sources should be given as input to the next level’s iteration, so the appropriate
axis will be scheduled from a new starting point instead of from zero, or the
origin.

Second, the reconfiguration status of the resources should be given as input
to the next level so that the reconfigurations can be accounted for properly. To
ensure that tasks, whose parents have not completed their execution not be
executed, task-type orderings can be reshuffled to ensure that this constraint
is not violated. In the worse case, some idle time will be scheduled.

There exist a cost and even a delay for moving data from one resource to
another. These parameters can easily be considered with our algorithm. The
cost of scheduling children tasks onto different resources can be added to the
reconfiguration cost for that task on all resources other than the one the parent
task is scheduled on. Similarly, the delay can be accounted for by adding the
delay to the execution time of the task.

When working with precedence DAGs, communication between tasks can
also be a constraint on the schedule. Fortunatly, communication cost between
tasks can be incorporated into our algorithm by adding the cost of communica-
tion to the task execution cost for schedules that split the tasks onto different
resources. We do not have a proof for whether this heuristic is an approximation
algorithm for the problem of DAG scheduling. In the future, we hope to extend
our work to address this more general model of tasks and provide not just a
heuristic for this problem but an approximation algorithm.

8. RELATED WORK

There exists extensive literature in the classic problem of scheduling indepen-
dent tasks onto heterogeneous resources so as to minimize the makespan. Note
this literature does not consider reconfiguration cost, the main thrust of this
work. A linear programming approach is taken in both Lensta et al. [1990]
and Potts et al. [1985]. The problem is formulated as an ILP problem. An LP-
relaxation is used to assign tasks to resources. Up to m-1 tasks can be split
among different resources, where m is the number of resources. To obtain a
valid nonpreemptive solution, each split task must be reassigned to one re-
source. This is done with complete enumeration as shown in Potts et al. [1985].
Also, the values can be rounded, as shown in Shenoy et al. [2003]. This article
goes on to give a two-approximation algorithm for the case of an unbounded
number of resources.

More recently, Lenstra et al. [1990] have improved on the previous work by
using linear programming to schedule short tasks and dynamic programming
to schedule long tasks. The determination of long versus short tasks is carried
out according to the level of approximation as determined by epsilon.

In the related work where reconfiguration cost is considered, several perspec-
tives exists. Li and Hauck [2002] first introduced prefetching of a configuration
profile to overlap the reconfiguration with execution in partially reconfigurable
systems. Resano et al. [2003, 2004] present heuristics that utilizes prefetching
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for reconfiguration-aware scheduling. These approaches are orthogonal to our
approach, as we do not consider the impact of prefeching in our work.

Reconfiguration cost in task execution is considered in the realm of regener-
ative energy sources in Follcarelli et al. [2006]; Moser et al. [2006]; Nahapetian
et al. [2007], and Rusu et al. [2003]. These articles present heuristics for sched-
ule task execution given the variability of energy availability.

Work on scheduling algorithms for reconfigurable resources that consider
area and execution time together includes Bazargan et al. [2000]. Our approach
is robust enough to be applied to this problem area.

An approximation algorithm is presented in Roy et al. [1999] for problems
with a delay–cost model, as with the problem presented in this article. Unfor-
tunately, the addition of reconfiguration cost to the model can only be done by
mapping reconfiguration cost to the execution delay, which results in schedules
with gaps in execution and potentially unnecessary additional reconfigurations.
Similarly, Yang and Catthoor [2003] consider pareto optimal solutions for the
case where there is a delay–cost trade-off. The same limitation applies to this
work as well.

In Shenoy et al. [2003], a mixed ILP-based heuristic is proposed for our
problem. The algorithm carries out an exponential branch-and-bound search of
all possible solutions, but halts the search after a certain amount of time, re-
gardless of whether the search has completed. In Dittmann and Frank [2007],
preemption of reconfiguration is examined. In Ghiasi [2004], an optimal algo-
rithm is given for the related problem of minimizing reconfiguration delay. In
Angermeier and Teich [2008], several heuristics are presented, which are adap-
tations of the pseudopolynomial solutions for the famous parallel machines,
single server problem. In Bondalapati and Prasanna [2002], several simple
heuristics are presented for this and related problems.

This article describes algorithms that do consider reconfiguration cost when
scheduling independent tasks onto heterogeneous resources. The heuristic pre-
sented is an approximation algorithm whose solution quality can be bounded.
Also, all the algorithms utilize only computational techniques, as opposed to
linear programming techniques. The work presented in this article is based on
the preliminary work presented in Nahapetian [2003].

9. CONCLUSION

In this article, we have presented a fully polynomial approximation algorithm
for determining the optimal scheduling of independent tasks onto heteroge-
neous resources with heterogeneous reconfiguration costs. The approximation
is derived form the optimal algorithm, by trimming the number of points in the
space.

The algorithm is shown both theoretically and experimentally to be a (1 + ε)-
approximation. Extensive verification of the algorithm utilizing random values
was conducted. Additionally, a real-world application to schedule the parallel
encryption of tasks onto an FPGA and a general-purpose processor was used
to demonstrate that the approximation is capable of scheduling the encryp-
tion of heterogeneous inputs onto heterogeneous resources dramatically more
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effectively than list scheduling. Its solution quality also compares well with the
optimal, though exponential, algorithm.
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